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Energy transmission by surface waves through an opening 
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In  an ocean of uniform depth the propagation of small-amplitude plane waves is 
impeded by two vertical semi-infinite perfectly reflecting barriers extending from the 
bottom of the sea to above the free surface. The two screens do not lie in general in 
the same plane, and they are separated by a gap through which wave energy is trans- 
mitted from the open sea into the sheltered region. A transmission coeEcient is 
established for small gap widths relative to the wavelength and the agreement with 
existing theoretical results for special cases is found to be very good. 

1. Introduction 
The transmission of two-dimensional plane waves through an aperture defined by 

the vertical edges of two semi-infinite planes is examined, with the objective of 
determining the amount of wave energy that penetrates into the sheltered region. 
The geometry of the problem is shown in figure 1. 

The waves are assumed to be surface water waves and the planes to extend to the 
horizontal bottom of the sea. The assumption regarding the kind of waves is not 
restrictive and is introduced for ease of visualization. 

The planes form an exterior angle 27rp towards the area representing the open sea. 
The incident wave train is monochromatic and of small amplitude described by the 
conventional first-order linear theory. Two configurations are investigated: (a) the 
symmetrical case where the gap between the two planes is AB; and (b )  the asym- 
metrical one in which the gap is OA (figure 1). 

The technique of matched asymptotic expansions is employed in the long-wave 
asymptotic limit B = kd + 0, k the wavenumber, d the gap width. The inner solution 
is based on Lamb’s (1932) argument that in the two-dimensional problem of waves 
passing through an aperture and in the immediate neighbourhood of the opening the 
motion ‘ must resemble the flow of a liquid through the same aperture ’ and an approx- 
imation is obtained by comparison with the results of the theory of the steady two- 
dimensional fluid motion as developed by the use of conformal transformations. 

The outer solution can be derived from the radiation of a line source located a t  the 
apex 0 and the scattered field of plane wave train incident on a wedge formed by the 
two semi-infinite planes extended to meet at the point 0 (figure 1). The solution of 
the diffraction of waves by a wedge is known (Oberhettinger 1958). 

The general problem of wave energy transmission through apertures has been the 
subject of numerous investigations; however most of them have been concerned with 
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FIGURE 1. Geometry of the problem. 

horizontal rather than vertical slots. A survey of problems of flow through small holes, 
involving matching techniques, has been given by Tuck (1975). A case similar to the 
one examined in this paper has been treated by Liu (1 975), who tackled by matched 
expansions the scattering of water waves by a pair of parallel semi-infinite barriers. 
It is noted that this configuration is not a special case of our problem since for ,&’ = 1 
the two planes coincide. 

For both geometries stated above simple expressions for the transmission factor 
are found. The parameters of the results are the angle 8 between the two barriers 
and the non-dimensional gap width 6 = d / h ,  h being the incident wavelength. For 
the case /3 = 9 Lamb’s result (Lamb 1932, art. 305) is reproduced. 

2. The outer problem 
Open sea 

The problem involves two independent length scales d and A, therefore it is seen as 
a singular perturbation problem, and a single asymptotic solution cannot be found 
valid throughout the flow field. As e -+ 0 it is clear that the outer field of the ocean 
region (0 < w < 2n)  will tend to the known solution f, of diffraction by a wedge, 
which suggests an expansion for the outer approximation 

f ( ~ ,  Y) N f w ( ~ >  Y) + X gn(e)fn(X, Y), (2 -  1 ) 
n 

where g,(e) -+ 0 as B -+ 0, and the incident plane wave has been incorporated in f,. 
Some of the functions f, will contain the behaviour of a line source at  the origin, 

because a t  large distance the flow resembles that caused by a negative line source 
located at  the opening of the two plane breakwaters. This behaviour is expressed by 

where H i s  the Hankel function of the first kind. It should be noted that when e is 
small enough but not zero the ‘ source field ’ becomes stronger than the ‘wedge field ’, 
whereas this latter dominates when E = 0. 

An expression of the solution of the reduced wave equation for the diffraction of 
plane waves by a wedge is 

- H o ( k r ) ,  (2.2) 
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where 8, is the angle of incidence, e,,, = 1 for m = 0, en, = 2 for m 2 1, and p = mT/8 
(Felsen & Marcuvitz 1973). 

For kr < 1 a small-argument expansion of the Bessel functions in equation (2 .3 )  
gives for 8 c T 

1 4 OJ 8 0  (ikr)l’zP exp (iin/p) COB -cos - + O[(kr)l@], 
f w w p + r ( 1 / 2 P )  2P 2P 

(2.4) 

where r ( x )  denotes the gamma function. 

assumed occupied; therefore the formula (2 .2 )  is divided by j3 and becomes 
The relation (2 .2 )  is true in free space. In  the present context a sector of angle 8 is 

i 
-- H,(kr). (2 .5 )  

4P 
Its expansion is 

where y is Euler’s constant. 

Sheltered region 

For an observer far away in the lee of the barriers the flow appears to be produced 
by a line source at  the apex. Consequently expressions corresponding to formulae 
(2 .5 ) ,  (2 .6 )  and of opposite sign will hold: 

1 
(In 2 - y )  - In (kr) ,  kr --f 0. 

i 1 

2 4  1 - P) +- 4(1-P)’2n(l-P) 
i 

3. The inner problem 
Symmetrical opening 

It was stated previously that the basic inner solution can be derived from the corres- 
ponding two-dimensional fluid motion. The case with a symmetrical opening in which 
OA = OB has been solved by Harris (1901). By a rotation of the co-ordinate system 
through an angle nP we get x and y in terms of the potential f of the steady state and 
the stream function p :  

pq 1 - p)1+ 
X =  [eFfcosP(p-n)+e@-l ) fcos(1-P)  (p-T) ] ;  

sin (1 - P )  n 
pB( 1 - P ) 1 - B  ’= s in( l -P)n  

[ebfsinP(p-n)-e(p-l)fsin ( I  -P )  ( p - n ) ] .  

An important point in this analysis is that the length of the segment OB depends 
on P, having a value (OB) = (OA) = cosec (1 -/3) T ,  so that (AB)  = 2 .  This limitation 
is relaxed later on. Writing equations (3.1) an6 (3 .2 )  in compact form with z = x+jy ,  

where j is the imaginary unit in the complex planes of figure 2. 
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FIGURE 2. The mapping of equation (3.3). I 

It is required that the function w is expressed in terms of z, in order that f, which 
is needed for the matching procedure, can be obtained as f = R(w) .  To invert equation 
(3.3) we construct the mapping that it represents in figure 2. 

Putting p = n in the above equation the line 

is found, which has a minimum at the point B where 

d - [ePf+ eV-l)f] = 0, 
df 

whence 
f’ =In-. 1-B 

B 
From figure 2 it is deduced that for the open sea sector R(w)  3 a; therefore, as a 

first approximation 

where 

the inverse of equation (3.3) is written as 

1 1 
w N --InB(P)+j.rr+-Inz, 

B(P) = /P( 1 - P)l-@/sin (1 - p) m. 
P P 

Taking the real parts we obtain 

1 1 f N --lnB(/?)+-lnr, r+m. 
B P (3.4) 

For the sheltered sector, R ( w )  --f --03 and therefore ignoring the first term in 
equation (3.3) we find to the first order 

1 1 1 
lnA-*+---lnz = ---1nB(B)+nj+-1nz 

1 
WN- 

1-B p-1 p-1 1-P 8-1 
and taking the real parts 

1 1 f - -InB(p)-- 
1 -B 1 - P r ,  
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Asymmetrical opening 

In  this case the opening is defined by OA rather than AB. For the general case where 
(OA) + (OB) it is found through a Schwarz-Christoffel transformation (Kober 1957) 
that 

where the positive constants a and c depend on the position of point B and on the gap 
width. 

Relation (3.6) maps the whole z plane with two semi-infinite cuts to the half-plane 
p > 0 and gives for the point B the co-ordinates 

It is required that point B coincides with 0; this gives the value of a as p c / (  1 - p)  
and equation (3.6) becomes 

The mapping described by this equation is shown in figure 3. 

derive for c the value 

It can be seen from figure 3 that for the ocean sector Iw1 >> 1 for 121 -+ co. Therefore to 
the fist order 

The point A has the co-ordinates zA = 2c28p( 1 - /3)2 e-2nfb and putting lzAl = 6 we 

c = [zap( 1 - P)2]1’28 .  (3.8) 

w N - (2pz)l/28. 

Putting this value of w into equation (3.7), we obtain to the second order 

(3.9) 

The parameter c brings to this order information about the gap width. 
For the sheltered sector of the plane (z, y )  it is noted from figure 3 that, for 1.1 --f 00, 

Iwi < 1. Therefore the terms of equation (3.7) are treated in the reverse order of 
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magnitude than previously. After successive approximation and some algebra the 
following expression is found : 

w - (az)l/~-l)t+N(az)’lcB-1)t2+ ..., 1.1 -+ co, (3.10) 

where 

4. Matching 
Having the inner and outer basic approximations a t  our disposal we can proceed 

to the matching of their expansions. Inspection of equations (3.4), (3.9) and of results 
in similar problems (Liu 1975) suggests that the source effect is more pronounced 
than the wedge effect in the early stages of the matching. So, for the outer solution we 
have the following. 

(4-1) 
iQ (i) Ocean sector: f - f, - qjH”(W’ 

where Q is a constant representing the strength of the line source to be determined by 
matching. 

(ii) Sheltered sector: f N q i q j  ” H,(kr). 

The expansions of the above equations are, respectively, 

with 

For the inner problem we have the following two solutions. 
(a) Symmetrical ca.se. The generalization of equation (3.3) to the case of a gap of 

width d can be written 

z +jy = exp{P[q(f+jp) + s]> + . . . , q f +  s > 1, (4.5) 

for the ocean sector, with q and s constants to be determined according to a method 
used by Newman (1974). 

For the sheltered sector of the plane we have 

z+jy = -Texp{(p- d B ( A  l ) [ q ( f + j p ) + s ] } + . . . ,  q f + s  < 1 .  (4.6) 

A factor e-j.1 has been suppressed in the above expressions since the orientation of 

Equations (4.5) and (4.6) give respectively 
the two breakwaters plays no role in the matching of terms up to the order (kr)lI2P. 

1 dB(P) s 1 
f N -- In---+-lnr+ ... PQ 2 q Pq 

r+m, (4.7) 
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and 

which are the generalizations to gap width d of results (3.4) and (3 .5 ) .  
Matching the first few terms of equations (4 .3)  and (4 .7 )  we get 

From this system of equations we obtain 

- 27r 27r 
and q = - .  

Q Q =  k i7r 

2 2  
dB(P)+fis  + y + In - -- In - 

2 

The other pair of equations (4 .4 )  and (4 .8 )  gives similarly 

from which, substituting the values of Q and q, we obtain 

In l-&wP)I + L 
1-P  

S =  9 

where L = y +In - +in. 
Now Q and q can be written 

-27r(1 - P )  Q =  and q = - s .  
ln- W P )  + L 

2 

In  the sheltered region the wave function becomes, from equation (4 .2 ) ,  

whence 

where 

563 

(4.8) 

(4 .9 )  

and Jo, Yo are the usual Bessel functions. The ratio of the wave height at  a particular 
point for two values of P is therefore 

with obvious notation. 
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(b )  Asymmetrical case. For the ocean side the first term of equation (3.7) gives, after 
suppression of the factor e2"iP, 

whence 
w - (2pZ)1/2p7 

1 

(4.10) 

In  the sheltered region and for the same co-ordinate system as above, equation 
(3.10) gives similarly 

which leads to 
w N (az)l/w-l), 

(4.11) 

If we put for convenience 
1 I 

C +  l n u  = 0, 
47.41 - P )  

which is legitimate provided we keep C constant (Tuck 197 1))  we find from equations 
(4.10) and (4.11) 

(4.12) 
1 V 

$" -- 4np In r + - 
4n 

and 

where 

1 
F - J  4?r(l-p)1nr7 

(4.13) 

Putting as previously F = qf +s  and performing a matching between the two 

1 1  1 Q  1 1 1 Q  

pairs of equations (4.3), (4.12) and (4.4), (4.131, we obtain the relations 

-= - -  - ---= -  
4np'q 2n.p'  4 4 1  -p)'q 2n' 1 -J?' 

QL --+- _ _ - -  - V s Q L 1  s - -- - 
4nq q 2np p' q 2n(1-/9)* 

The excessive equation confirms the correct choice of the function multiplying Q 
in the outer expansions. The solution of the above simultaneous equations is 

In the protected region we get from equation (4.2) 

inH,,( kr) 1 
2 'P(1-P)  V + L  f -  - (4.14) 

on the assumption that the incident wave is of unit amplitude. The wave height 
obtained from equation (4.14) is 

n 
4 w2+ n2 > 

where W = y+lnBk+p(l-P) V .  
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FIGURE 4. Range of applicability of the theory. 
Lower line refers to the symmetrical opening. 

The ratio of the wave heights for two values of 6 is now 

(4.15) 

5. Evaluation of the results 
I n  the range of practical values of p(+ < /3 < $) it can be seen from equation (4.14) 

that, for any two values p1 > p2, we have I f l l  > I f 2 1 ,  which gives IW,( > JW,( through 
equation (4.15). Considering now the function In [pP( 1 -/3)(1-8)] and noting that 
S ( = d / h )  < 1, we conclude that W is a non-positive quantity in the above range ofp.  
The maximum acceptable gap width happens therefore a t  W = 0;  this gives a a,,, 
of 0-715 occurring a t  6 = rr. 

Similar considerations lead to corresponding restrictions as regards the gap width 
in the symmetrical case. Both ranges of applicability of this theory are shown in 
figure 4 with respect to maximum gap width for 0 < 6 < rr. 

are 0-550 and 0.443 for the asymmetrical and sym- 
metrical case respectively. Generally the theory can be applied to  the former case 
for gap widths greater than for the latter. 

A quantity is introduced now related to the transmission of energy through the 
passage as follows: 

The values of S,,, for 6 = 
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FIGUF~E 5. The ratio of the transmission factors To , T, as a function of 0. 

in which HI, is the height of the incident wave and H ( r , w )  the wave height at the 
point (r ,  0). This relation can be approximated by 

(5.1) 
P T=-xKRq6,, 
6 2  

where p = r /d  and Ki is the diffraction coefficient at the point <(p, w) .  If Ki is assumed 
uniform along the arc p = constant, equation (5.1) yields 

Equations (4.9) and (4.14) combined with (5.2) and the expansion 

for large kr, give for the symmetrical and asymmetrical opening, respectively, 

The ratio of the transmission coefficient T associated with an angle 8, to the corres- 
ponding one of 6' = rr has been drawn in figure 5 as a function of 8 for the asymmetrical 
opening. 

It is noted that the relation shown in this figure is close to a linear dependence, 
with maximum deviation of less than 5%. 

The transmission coefficient of equations (5.3) expresses the proportion of the 
energy incident on the, gap that penetrates into the protected area. For small enough 
gaps this definition of T results in transmission coefficient greater than one. It is 
evident that the incident energy changes with the gap width. However, it  is possible 
to relate T to a constant incident energy. The energy transmitted for S,,, is taken as 
equal to one, with which the other coefficients are compared. The corresponding trans- 


